Copied to
clipboard

G = C42.26Q8order 128 = 27

26th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.26Q8, C81(C4⋊C4), C8⋊C49C4, C2.1(C8⋊Q8), C4.4(C4⋊Q8), (C2×C8).10Q8, (C2×C8).108D4, C2.1(C83D4), C429C4.8C2, C428C4.9C2, C42.144(C2×C4), C2.1(C8.2D4), C23.756(C2×D4), (C22×C4).280D4, C22.30(C4⋊Q8), C2.8(C429C4), C22.30(C41D4), C22.66(C8⋊C22), (C22×C8).220C22, (C2×C42).259C22, C2.9(M4(2)⋊C4), (C22×C4).1346C23, C22.55(C8.C22), C4.36(C2×C4⋊C4), (C2×C8).63(C2×C4), (C2×C8⋊C4).4C2, (C2×C4.Q8).4C2, (C2×C4).48(C4⋊C4), (C2×C4).731(C2×D4), (C2×C4).196(C2×Q8), (C2×C2.D8).33C2, (C2×C4⋊C4).50C22, C22.105(C2×C4⋊C4), (C2×C4).545(C22×C4), SmallGroup(128,579)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.26Q8
C1C2C22C23C22×C4C2×C42C2×C8⋊C4 — C42.26Q8
C1C2C2×C4 — C42.26Q8
C1C23C2×C42 — C42.26Q8
C1C2C2C22×C4 — C42.26Q8

Generators and relations for C42.26Q8
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1c2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 236 in 128 conjugacy classes, 76 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2.C42, C8⋊C4, C4.Q8, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C428C4, C429C4, C2×C8⋊C4, C2×C4.Q8, C2×C2.D8, C42.26Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C4⋊C4, C41D4, C4⋊Q8, C8⋊C22, C8.C22, C429C4, M4(2)⋊C4, C83D4, C8.2D4, C8⋊Q8, C42.26Q8

Smallest permutation representation of C42.26Q8
Regular action on 128 points
Generators in S128
(1 104 57 29)(2 101 58 26)(3 98 59 31)(4 103 60 28)(5 100 61 25)(6 97 62 30)(7 102 63 27)(8 99 64 32)(9 107 114 127)(10 112 115 124)(11 109 116 121)(12 106 117 126)(13 111 118 123)(14 108 119 128)(15 105 120 125)(16 110 113 122)(17 70 74 56)(18 67 75 53)(19 72 76 50)(20 69 77 55)(21 66 78 52)(22 71 79 49)(23 68 80 54)(24 65 73 51)(33 41 93 85)(34 46 94 82)(35 43 95 87)(36 48 96 84)(37 45 89 81)(38 42 90 86)(39 47 91 83)(40 44 92 88)
(1 24 5 20)(2 17 6 21)(3 18 7 22)(4 19 8 23)(9 85 13 81)(10 86 14 82)(11 87 15 83)(12 88 16 84)(25 55 29 51)(26 56 30 52)(27 49 31 53)(28 50 32 54)(33 111 37 107)(34 112 38 108)(35 105 39 109)(36 106 40 110)(41 118 45 114)(42 119 46 115)(43 120 47 116)(44 113 48 117)(57 73 61 77)(58 74 62 78)(59 75 63 79)(60 76 64 80)(65 100 69 104)(66 101 70 97)(67 102 71 98)(68 103 72 99)(89 127 93 123)(90 128 94 124)(91 121 95 125)(92 122 96 126)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 91 22 127)(2 94 23 122)(3 89 24 125)(4 92 17 128)(5 95 18 123)(6 90 19 126)(7 93 20 121)(8 96 21 124)(9 29 83 49)(10 32 84 52)(11 27 85 55)(12 30 86 50)(13 25 87 53)(14 28 88 56)(15 31 81 51)(16 26 82 54)(33 77 109 63)(34 80 110 58)(35 75 111 61)(36 78 112 64)(37 73 105 59)(38 76 106 62)(39 79 107 57)(40 74 108 60)(41 69 116 102)(42 72 117 97)(43 67 118 100)(44 70 119 103)(45 65 120 98)(46 68 113 101)(47 71 114 104)(48 66 115 99)

G:=sub<Sym(128)| (1,104,57,29)(2,101,58,26)(3,98,59,31)(4,103,60,28)(5,100,61,25)(6,97,62,30)(7,102,63,27)(8,99,64,32)(9,107,114,127)(10,112,115,124)(11,109,116,121)(12,106,117,126)(13,111,118,123)(14,108,119,128)(15,105,120,125)(16,110,113,122)(17,70,74,56)(18,67,75,53)(19,72,76,50)(20,69,77,55)(21,66,78,52)(22,71,79,49)(23,68,80,54)(24,65,73,51)(33,41,93,85)(34,46,94,82)(35,43,95,87)(36,48,96,84)(37,45,89,81)(38,42,90,86)(39,47,91,83)(40,44,92,88), (1,24,5,20)(2,17,6,21)(3,18,7,22)(4,19,8,23)(9,85,13,81)(10,86,14,82)(11,87,15,83)(12,88,16,84)(25,55,29,51)(26,56,30,52)(27,49,31,53)(28,50,32,54)(33,111,37,107)(34,112,38,108)(35,105,39,109)(36,106,40,110)(41,118,45,114)(42,119,46,115)(43,120,47,116)(44,113,48,117)(57,73,61,77)(58,74,62,78)(59,75,63,79)(60,76,64,80)(65,100,69,104)(66,101,70,97)(67,102,71,98)(68,103,72,99)(89,127,93,123)(90,128,94,124)(91,121,95,125)(92,122,96,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,91,22,127)(2,94,23,122)(3,89,24,125)(4,92,17,128)(5,95,18,123)(6,90,19,126)(7,93,20,121)(8,96,21,124)(9,29,83,49)(10,32,84,52)(11,27,85,55)(12,30,86,50)(13,25,87,53)(14,28,88,56)(15,31,81,51)(16,26,82,54)(33,77,109,63)(34,80,110,58)(35,75,111,61)(36,78,112,64)(37,73,105,59)(38,76,106,62)(39,79,107,57)(40,74,108,60)(41,69,116,102)(42,72,117,97)(43,67,118,100)(44,70,119,103)(45,65,120,98)(46,68,113,101)(47,71,114,104)(48,66,115,99)>;

G:=Group( (1,104,57,29)(2,101,58,26)(3,98,59,31)(4,103,60,28)(5,100,61,25)(6,97,62,30)(7,102,63,27)(8,99,64,32)(9,107,114,127)(10,112,115,124)(11,109,116,121)(12,106,117,126)(13,111,118,123)(14,108,119,128)(15,105,120,125)(16,110,113,122)(17,70,74,56)(18,67,75,53)(19,72,76,50)(20,69,77,55)(21,66,78,52)(22,71,79,49)(23,68,80,54)(24,65,73,51)(33,41,93,85)(34,46,94,82)(35,43,95,87)(36,48,96,84)(37,45,89,81)(38,42,90,86)(39,47,91,83)(40,44,92,88), (1,24,5,20)(2,17,6,21)(3,18,7,22)(4,19,8,23)(9,85,13,81)(10,86,14,82)(11,87,15,83)(12,88,16,84)(25,55,29,51)(26,56,30,52)(27,49,31,53)(28,50,32,54)(33,111,37,107)(34,112,38,108)(35,105,39,109)(36,106,40,110)(41,118,45,114)(42,119,46,115)(43,120,47,116)(44,113,48,117)(57,73,61,77)(58,74,62,78)(59,75,63,79)(60,76,64,80)(65,100,69,104)(66,101,70,97)(67,102,71,98)(68,103,72,99)(89,127,93,123)(90,128,94,124)(91,121,95,125)(92,122,96,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,91,22,127)(2,94,23,122)(3,89,24,125)(4,92,17,128)(5,95,18,123)(6,90,19,126)(7,93,20,121)(8,96,21,124)(9,29,83,49)(10,32,84,52)(11,27,85,55)(12,30,86,50)(13,25,87,53)(14,28,88,56)(15,31,81,51)(16,26,82,54)(33,77,109,63)(34,80,110,58)(35,75,111,61)(36,78,112,64)(37,73,105,59)(38,76,106,62)(39,79,107,57)(40,74,108,60)(41,69,116,102)(42,72,117,97)(43,67,118,100)(44,70,119,103)(45,65,120,98)(46,68,113,101)(47,71,114,104)(48,66,115,99) );

G=PermutationGroup([[(1,104,57,29),(2,101,58,26),(3,98,59,31),(4,103,60,28),(5,100,61,25),(6,97,62,30),(7,102,63,27),(8,99,64,32),(9,107,114,127),(10,112,115,124),(11,109,116,121),(12,106,117,126),(13,111,118,123),(14,108,119,128),(15,105,120,125),(16,110,113,122),(17,70,74,56),(18,67,75,53),(19,72,76,50),(20,69,77,55),(21,66,78,52),(22,71,79,49),(23,68,80,54),(24,65,73,51),(33,41,93,85),(34,46,94,82),(35,43,95,87),(36,48,96,84),(37,45,89,81),(38,42,90,86),(39,47,91,83),(40,44,92,88)], [(1,24,5,20),(2,17,6,21),(3,18,7,22),(4,19,8,23),(9,85,13,81),(10,86,14,82),(11,87,15,83),(12,88,16,84),(25,55,29,51),(26,56,30,52),(27,49,31,53),(28,50,32,54),(33,111,37,107),(34,112,38,108),(35,105,39,109),(36,106,40,110),(41,118,45,114),(42,119,46,115),(43,120,47,116),(44,113,48,117),(57,73,61,77),(58,74,62,78),(59,75,63,79),(60,76,64,80),(65,100,69,104),(66,101,70,97),(67,102,71,98),(68,103,72,99),(89,127,93,123),(90,128,94,124),(91,121,95,125),(92,122,96,126)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,91,22,127),(2,94,23,122),(3,89,24,125),(4,92,17,128),(5,95,18,123),(6,90,19,126),(7,93,20,121),(8,96,21,124),(9,29,83,49),(10,32,84,52),(11,27,85,55),(12,30,86,50),(13,25,87,53),(14,28,88,56),(15,31,81,51),(16,26,82,54),(33,77,109,63),(34,80,110,58),(35,75,111,61),(36,78,112,64),(37,73,105,59),(38,76,106,62),(39,79,107,57),(40,74,108,60),(41,69,116,102),(42,72,117,97),(43,67,118,100),(44,70,119,103),(45,65,120,98),(46,68,113,101),(47,71,114,104),(48,66,115,99)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim1111111222244
type++++++-+-++-
imageC1C2C2C2C2C2C4Q8D4Q8D4C8⋊C22C8.C22
kernelC42.26Q8C428C4C429C4C2×C8⋊C4C2×C4.Q8C2×C2.D8C8⋊C4C42C2×C8C2×C8C22×C4C22C22
# reps1111228244222

Matrix representation of C42.26Q8 in GL8(𝔽17)

41000000
013000000
00010000
001600000
00000010
0000113130
000016000
0000015154
,
10000000
01000000
00100000
00010000
000001600
00001000
000016440
000082413
,
41000000
013000000
00100000
00010000
00000001
0000915134
000002213
00000100
,
155000000
162000000
00100000
000160000
000013121316
000083144
0000112164
00007812

G:=sub<GL(8,GF(17))| [4,0,0,0,0,0,0,0,1,13,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,13,0,15,0,0,0,0,1,13,0,15,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,16,8,0,0,0,0,16,0,4,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,13],[4,0,0,0,0,0,0,0,1,13,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,15,2,1,0,0,0,0,0,13,2,0,0,0,0,0,1,4,13,0],[15,16,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,8,1,7,0,0,0,0,12,3,12,8,0,0,0,0,13,14,16,1,0,0,0,0,16,4,4,2] >;

C42.26Q8 in GAP, Magma, Sage, TeX

C_4^2._{26}Q_8
% in TeX

G:=Group("C4^2.26Q8");
// GroupNames label

G:=SmallGroup(128,579);
// by ID

G=gap.SmallGroup(128,579);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,723,100,2019,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽